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We study the thermodynamic limit of the orientation-dependent surface tension. 
Under general conditions, which we show to hold true for a large class of lattice 
systems, we prove that the limit exists and that it satisfies some convexity 
properties related to the pyramidal inequality introduced by R.L. Dobrushin 
and S.B. ShlosmanJ 1) We discuss some consequences of these results for the 
equilibrium crystal shape. 
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1. I N T R O D U C T I O N  

This work is devoted to a study of the surface tension and its dependence 
on the orientation of the interface in relation to the equilibrium crystal 
shape. The surface tension is also of a fundamental importance in the study 
of phase transitions and we refer the reader to ref. 2 for a review of many 
previous results. 

It is well known that the equilibrium crystal shape of one component 
a inside another component b is obtained by minimizing the surface free 
energy between a and b, and that this shape is given by the Wulff construc- 
tion, provided one knows t h e  orientation-dependent surface tension 
between the components. It is therefore important, even if a microscopic 
derivation of the Wulff construction within statistical mechanics has been 
proved only for a small class of lattice models, (3'4) to study the properties 
of the surface tension v(n) as a function of the unit vector n which specifies 
the orientation of the interface. In particular, the above-mentioned 
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microscopic derivations need a good knowledge of r(n), and Dobrushin 
etal.  13) have proved, for the two-dimensional Ising model, an inequality 
between the surface tensions at different orientations, called the strong 
triangular inequality. A consequence this is that the corresponding Wulff 
shape is a convex body with smooth boundary. It was conjectured (1) that 
this inequality, in its nonstrict form, holds true in very general situations, 
as well as its higher dimensional analog called the pyramidal inequality. 

In this paper we show, for lattice models in dimension d>~ 2 and under 
certain general assumptions, that the thermodynamic limit ~(n) of the 
finite-volume surface tension exists, and that it satisfies the pyramidal 
inequality. The assumptions are shown to hold true for a large class of 
models, as a consequence of correlation inequalities. The pyramidal 
inequality is shown to be equivalent to the convexity of a related quantity, 
namely of the function f ( x ) =  Ixl ~(x/Ixl) (for any vector x), and that 
it implies also the convexity of the projected surface tension "Cp~--- 
(1/na) z(nl,..., ha), as a function of d -  1 variables. We may therefore define 
the convex conjugate functions or Legendre transforms of f and Zp. Let us 
denote them by 3 and q~, respectively. It turns out that ~ is the indicator 
function of the equilibrium crystal shape and that the graph of xa=  
q~(x~ ..... xd_~) gives the boundary of this shape. Thus, q~ is the function 
used in the Andreev equivalent construction (5) of the equilibrium crystal 
shape, and we show that it can also be obtained as the free energy 
associated to an appropriate statistical ensemble. 

The paper is organized as follows. In Section 2 we study the thermo- 
dynamic limit of the finite-volume surface tension under two general 
conditions called C1 and C2. We prove the existence of this limit for 
paralMepipedic and also for more general sequences of boxes. In Section 3 
we show that, under the same conditions, the surface tension satisfies the 
pyramidal inequality and that the pyramidal inequality is equivalent to the 
convexity of f(x).  We also comment on the equilibrium crystal shape, dis- 
cuss some consequences of the convexity o f f (x) ,  and prove the equivalence 
of the statistical mechanical ensembles whose free energies give, respec- 
tively, the projected surface tension and the graph of the crystal shape. 
Other related results are described in a number of remarks at the end of 
Section 3. Finally, we prove in the Appendix that conditions C1 and C2 
hold true for a general class of lattice systems. 

2. DEF IN IT ION OF THE S U R F A C E  T E N S I O N  

We consider a spin model on a d-dimensional regular lattice 5 ~ with 
configuration space g2 = S ~, where S is a finite set of values of the spin a(i) 
attached at each lattice site i, and a finite-range, translation-invariant inter- 
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action {~bA}, A ~ .  The functions ~A:sA-'~ may be understood as 
A-cylindrical functions on ~2 such that ~A = 0 if diam A > R and ~bA,(a') = 
OA(a) if A' = A  + a  and a ' ( i +  ~ ) :  a(i) for any c~ ~.s Denoting by O- A the 
restriction of a configuration a e f2 to a subset A c A o, cr A = {or(i)}, i t  A, 
and by a A w r the configuration (in f2) whose restrictions to A and its 
complement A c = ~ \ A  are a A and ~rAC, respectively, we introduce the 
Hamiltonian in A under a boundary condition ~ s f2 by 

HA(~ A I(~)= ~ @A(~rAU~Ac) (1) 
A c ~ A ~  

and the partition function at the inverse temperature fi by 

Z~(A)  = ~  exp[ - - f lHA(a A j i ) ]  (2) 
o" A 

We consider two distinct thermodynamic phases (a) and (b) that 
coexist at the inverse temperature fl, which means two extremal periodic 
(with respect to the translations of 5(') Gibbs states. We assume, as usual, 
that these states are associated with two periodic ground configurations 
a =  {a(i)}, i t  • ,  and b =  {b(i)}, i t  ~9 ~ in such a way that they correspond 
to the limits, when A ~ o e ,  of the finite-volume Gibbs measures 
Z~(A)  - 1 exp [ - flHA(aA I ff)] with the boundary conditions ~ respectively 
equal to a and b. 

Let A be a parallelepiped of sides L1,..., Ld 1, M, parallel to the axes 
el,... , ed, centered at the site c~ S ,  and let n = (nl ..... nd) ~ Na be a unit 
vector such that na = n-ed > 0. We denote by p .  the hyperplane orthogonal 
to n and passing through the center c of A, by S . ( A )  the area of the 
portion of this plane contained inside A, and by (a, b, n) the mixed boundary 
condition where if(i) = a(i) if i is above the plane, i.e., if ( i -  c).  n >~ 0, and 
where ~(i) = b(i) if ( i -  c).  n < 0. 

We define the surface tension associated with the interface (a, b) 
orthogonal to n by 

F . ( A )  
~(n) = lira lira (3) 

Ll,..., La 1 ~  ~ M-+ o~ S n ( A  ) 

where 

l Z(~ 
F . ( A )  = - - :  log (4) 

P [Za(A) Z b ( A ) ]  1/2 

This definition is justified by noticing that in this expression the 
volume terms proportional to the free energy of the coexisting phases, as 
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well as the terms corresponding to the boundary effects, cancel, and only 
the term that takes into account the free energy of the interface is left. The 
symmetry of the box and the boundary condition with respect to the center 
are necessary for the cancelation of the boundary terms. For a nonsym- 
metric box the numerator in the argument of the logarithm should be 
replaced by [Z(a'b'*/(A) Z (b .... )(A)] 1/2. 

We shall also consider the projected surface tension defined by 

~(n) 
~p = (5) 

nd 

In order to study the existence of the limit (3) and some basic 
properties of the surface tension it will be useful to consider more general 
boxes and boundary conditions. 

For any i =  (il,..., ia) we write i '= (ix,..., id_l) and consider these i' as 
sites of a (d-1)-dimensional  lattice 5r the projection of ~ along the 
direction ea. We introduce the vertical cylinders 

A = { i e ~ :  i '~Q, mx(i')<<.ia<~m2(i')} (6) 

where Q is a finite subset of ~ '  and xd=mk(xx ..... xd_l), k =  1, 2, are two 
hyperplanes in Nd. 

We introduce also more general mixed boundary conditions (a, b, )~) 
associated with a smooth, real-valued function xd= 2(Xl ..... Xd_l) defined 
on ~a-~, by taking 6(i)=a(i) if ia>~;t(i') and 6(i)=b(i) if ia<)~(i'). We 
assume that the normal vector n to the hypersurface Xd=2(Xl ..... Xd--~) 
satisfies na> ~ for some given a > 0 and that the portion inside A of the 
hyperplane m l lies above and at a distance larger than R from this surface. 
The analogous condition is assumed for the hyperplane m2 lying below 2. 

Then we consider the expression 

1 (Z(a'b';')(A) Z(b'~)(A)) x/2 
F(A)=  - ~ l o g  \ Z - ~ Z b ( A  ) } (7) 

which gives the residual free energy associated with the corresponding 
interface. 

We remark that the following property holds: 

C.O: I f  A and A' are two disjoint boxes separated by a distance larger 
than R, then 

F(A w A')= F(A) + F(A') (8) 

This is because the partition functions in (7) factorize. 
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We assume that the following conditions are satisfied: 

C.I: If  A and A' are cylindrical boxes with the same basis Q and 
A D A', then 

0 <<, F(A) <~ F(A') (9) 

C.2: I f  A and A' are cylindrical boxes with bases Q and Q' and 
A ~ A', then 

F(A ) <~ F(A') + !Q\Q'[ (K/a) (10) 

where K is some positive constant. 

In the Appendix we prove that conditions C1 and C2 are fulfilled for 
the following situations: 

1. Ferromagnetic spin-l/2 systems with pair interactions, where 

H= - - 2  JA{YA 

with JA>>-O, JA=O if [A] is odd, era = l -La( i  ), and a(i)e { - 1 ,  +1}. For 
these systems, which include the ferromagnets with two-body potentials at 
zero external field, the considered surface tension is that between the ( + )  
and ( - )  phases respectively associated with the boundary conditions 
a(i)= 1 and b(i)= -1.  

2. Ferromagnetic q-state spins systems of the form 

H = - X J(M) cos MO 

where M is a multiplicity function, MO = Z i  MiO(i), J(M)>~0, J(M)= O 
unless ~iMi=O,  O(i)=(2~/q)a(i), and a(i)e {1 ..... q}. The Potts and 
clock models belong to this class of systems. For them the considered sur- 
face tension is that between two ordered phases (a) and (b) respectively 
associated with the boundary conditions a(i)=a and b(i)=b, where 
a , b ~ { 1  ..... q}. 

3. Solid-on-solid models of interfaces. 

The proof of conditions C1 and C2 given in the Appendix follows from 
correlation inequalities and is valid for all temperatures. Similar conditions 
should hold for a large class of spin systems, in particular, in the 
framework of the Pirogov-Sina'i theory (6) at low temperatures. 

T h e o r e m  1. Under the hypothesis above, the surface tension ~(n) 
defined by the limit (3) exists and equals 

inf inf F"(A) (11) 
LI,....Ld_, g S.(A) 
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Moreover, z(n) is nonnegative, bounded above by K, and lower semi- 
continuous as a function of fl and the interaction potentials. 

Proof. First, we establish the monotonicity property 

F.({L~},M)<~F.({L~},M p) if M>~M' (12) 

for F.(A)=F.({Li},  M) and M' large enough. This shows that the limit 
M-~ or exists and 

lim Fn({L~}, M)=infF.({L~}, M)=-F.({L~}) (13) 
M ~ o v  M 

We shall then prove that F,({Li}) is bounded 

d 1 

F.({Li}) ~< ]q (Li+ R)(K/na) (14) 
i - - 1  

and that it satisfies the following subadditivity property (up to boundary 
terms) 

F.({L'I + L'~ + R, L2,..., La_,}) 

<<,F.({L',, f2,..., La-1})+  F.({L;, L2 ..... La_ 1}) 

+ a-l~ 2RKL1 " " L  d 1 +RKL2"..Ld_I (15) 

i-- 1 L~ 

The subadditivity (15) together with the bound F(A)>10 implies, following 
standard arguments in the theory of thermodynamic limits (see, for 
instance, ref. 7), the existence of 

lim "Fn({Li}) (16) 
L , ~  \ i = l  L i J  

which equals the infimum over L1,..., Ld_ x. Since S,(A) = (1/nd) F[ L~, this 
ends the proof of the first part of Theorem 1. 

From F(A)>10 it follows that z(n)>/0, the upper bound follows from 
(14), and the lower semicontinuity from the fact that z(n) is the infimum 
over a set of continuous functions. 

We next prove properties (12), (14), and (15). 
The monotonicity property (12) follows clearly from condition C1. 

The upper bound (14) follows from condition C2 by taking A'= ~ .  
In order to prove the subadditivity property (15), we consider 

three parallelepipeds A', A", and A of sides (L'I, L2 ..... Ld_I,M'),  
(L~', L2 ..... La_ 1, M"), and (L'I + L'; + R, L 2,..., L d_ 1, M) placed in such a 
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way that A' u A" ~ A, the distance from A' to A" is R, and the same hyper- 
plane which passes through the center c E ~ of A passes also through the 
Center of A' and A", and defines the (a, b) boundary condition for the three 
boxes. Now we apply condition C2, taking (8) into account: 

F.(A)  ~ F.(A' )  + F.(A")  + 
RKL2 "'" Ld 1 

(17) 

We notice that the first term on the right-hand side of (17) approximatively 
coincides with the sum F, ( {L I ,  L2,... ,L d I} )+F.({L ' I ' ,L2 , . . . ,L  d ,}), 
when M', M",  and M tend to infinity. Some error is made because from the 
construction the centers of A' and A" do not necessarily coincide with a 
site of the lattice, as is assumed in the definition of z(n). This error is 
bounded, however, by the third term on the left-hand side of (15). This 
may be seen by using an appropriate function 2 introduced to compensate 
the displacement of the center (by a distance less than one) and the fact 
that the interaction has a finite norm. | 

We next extend the proof of the existence of the limit to more general 
sequences of boxes. 

We shall consider the boxes A defined by (6), in which ml and m 2 are 
two parallel hyperplanes. For  these boxes F(A) will represent the function 
defined by (7) when the function 2 specifying the boundary conditions is a 
hyperplane Xd= p.(Xl ..... Xa_ 1) orthogonal to n. We assume that 

ml(i')<~p.(i ')<.rn2(i'  ) for all i ' ~ Q  (18) 

and when the hyperplanes rn 1 and rn 2 are orthogonal to n, we denote by 
h t and h2 their respective distances to the hyperplane p. .  

Let IQol be the number of lattice sites at distance less than or equal 
to p to Q and to its complement. We say that the sets Q tend to infinity 
in the sense of van Hove if [Q[ ~ oo and IQol/IQt ~ 0  for all p~>0. We say 
that the sets Q tend to infinity in the sense of Lanford, Q--+ ~ ' ,  if they 
become infinitely large in the sense of van Hove and for each Q there is a 
parallelepiped P e  which contains Q such that for sufficiently small 6 > 0 
and all Q we have IQI/IPel >16. 

Theorem 2. Under the above hypotheses, if the family of sets 
Q c ~L~ ~ tend to infinity in the sense of Lanford, then the limit defining the 
surface tension exists 

,. F(A) 
~ ( n ) =  nm - - . n a  
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provided that the heights h I = h~(Q) and h 2 = h2(Q) tend to infinity when 
Q--* 5 ~ (as slowly as we wish), 

ProoL The fact that instead of taking a family of parallelepipeds Q 
one can choose a family of sets Q tending to infinity in the sense of Lanford 
is a known result in the theory of the thermodynamic limit. We refer the 
reader to ref. 7 for this. We thus restrict ourselves to the situation where the 
basis of the cylinder A is a parallelepiped Q of sides L1 ..... Ld 1. To prove 
the theorem in this case, we shall generalize an argument used in ref. 8 for 
the analysis of the surface tension in the Ising model. 

We deal first with the case in which the hyperplanes ml and m2 are 
parallel to p , ,  and assume that hi(Q) and h2(Q) tend to infinity when 
Q ~ 50'. 

First, we consider a cylinder z / o f  parallelepipedic basis Q with sides 
L],..., L} 1, centered on a lattice site, and defined with two hyperplane at 
distance /~ from the hyperplane orthogonal to n and passing through the 
center of A. We take L; = (Li/r) - (R/2), for i = 1,..., d -  1 and some integer 
r, and put h = m i n { h l - 1 ,  h 2 -  1} .  We notice that it is possible to place 
k = r d- 1 translates A s of A inside A in such a way that the mutual distances 
between two different cylinders is at least R and that the hyperplane 
orthogonal to n, which defines the boundary condition for A, is at distance 
less than one from the centers of the Aj. Then conditions C2, with 
A ' =  (J A j, and CO give 

F(A) <~ ~ F(Aj) + inf L; 
j = l  

Assume that F(/1) is computed with the boundary condition determined on 
by the hyperplane orthogonal to n which passes through its center. Then 

by taking into account condition C1 and the fact that the difference arising 
from the two boundary conditions, defined with different hyperplanes at 
distance less than one, is at most RK/nd multiplied by the perimeter of Q, 
we get 

d 12RKL, 1...L,d 1 
F(Aj) <~ F(A) + ~ , (19) 

i= 1 i'ld" Li 

for each A s , and therefore 

F(A) F(A) R K ( d - 1 )  2RKd~-, l l  

I-~ ~ < - - ~ +  7mi---n~L~ + - - k - - i ~ 1 L ~  
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Then, by letting r--+ 0% we obtain 

lim sup F(A ) <<, 1 
Q~O, tQI ~-7 lira F(A) + o(IQI) (20) 

where o([Ol) --+ 0 when L 1 . . . . .  Ld_ 1 --+ oc. 
Next, we prove the converse inequality. We choose A with basis 0 = Q 

and h large enough, placed in such a way that A =  A and that the two 
hyperplanes defining the boundary conditions for A a n d / I  are at distance 
less than one. Then condition C1, together with the bound used in (19), 
implies 

a 1 2 R K L 1 . . . L d  1 
F(A)>~F(A) -  

i = 1 nd" Li 

and therefore 

lim inf F( A ) >1 . 1 . Q~ ~' IO[ e l l m  ~ ahrn e(/1) (2!) 

The theorem in the considered case now follows from (20) and (21), 
because for Q -+ 2~', the right-hand sides of both inequalities coincide with 
(1/nd) v(n). 

We next deal with the case in which m 1 and m2 are not orthogonal to 
n and relation (18) is satisfied. We notice that inequality (21) may be 
proved as above. To prove (20), we proceed by defining the box A and its 
k =  ( d - 1 )  r translates as was done above, the only difference being that 
now all translates A1,..., Ak of A may be placed inside A, except those 
whose bases Qj are at distance less than one from s Neglecting these 
exceptional Aj, whose number is only proportional to ( d - 2 )  r, the same 
argument gives the desired inequality (20) and ends the proof of the 
theorem. | 

Remark 1. The interface often has large oscillations, with probability 
one, which are perhaps not permitted inside the box assumed in 
Theorem 2. Nevertheless, one always obtains the correct surface tension. 

Remark 2. The surface tension defined by (3) has the same sym- 
metry properties under rotations and reflections of the lattice as the inter- 
actions. One easily sees this fact by taking an appropriately symmetric A 
and then applying Theorem 2. 

Remark 3. In this section it has been assumed that nd > 0. It is clear 
that this is not a real restriction for lattice systems (it is a necessary 
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hypothesis instead for solid-on-solid models), and that by choosing 
appropriate axes we obtain v(n) for all n. Since the surface tension only 
depends on the orientation of the plane Pn, we have z(n)= r ( -n ) .  

3. C O N V E X I T Y  PROPERTIES 

Let Ao, A1 . . . . .  Ad @ ~d be any set of d+  1 points in general position 
and, for i = 0  ..... d, let Ai=A(Ao  ..... -'4i,...,Ad) be the (d-1)-dimensional 
simplex defined by all points Ao ..... A d, except Ai. We denote by n~ the unit 
vector orthogonal to Ai and by IA~1 the (d-1)-dimensional area of 3~. 
Following ref. 1, we say that v(n) satisfies the pyramidal inequality if, for 
any set Ao ..... Aa, 

d 

13ol r ~ IA,I r (22) 
i 1 

We introduce the function on ~d defined by 

f(x)  = Ixl ~(x/Ix/) (23) 

T h e o r e m  3. The following propositions are equivalent: 

1. r(n) satisfies the pyramidal inequality. 

2. f (x)  is a positively homogeneous convex function. 

Moreover, for the considered systems and under conditions C1 and 
C2, these propositions hold. 

ProoL For simplicity, we shall restrict ourselves to the 3-dimensional 
case. We first prove statement 1 for the systems under consideration. 

We introduce the vertices Ao ..... A3 of the pyramid and their projec- 
tions A;,..., A; on the horizontal plane, and assume that A; falls in the 
interior of the triangle A'1, A~, A;. We denote by Q0 the set of sites of 5 ~ 
inside the triangle A'1, A~, A; and by Q1 the set of sites of 5O' inside the 
triangle A~, A~, A; whose distance from the sides of this triangle is larger 
than R. Similarly, we define the sets Q2 and Q3 with respect to the triangles 
A;, A'1, A; and A'o, A'1, A'2. We introduce 2(xl ,  x2) as the function 
associated with the surface which coincides with the plane A~, A2, A3 out- 
side the triangle A'1, A'2, A'3 and with the other three faces of the pyramid 
inside it. Taking into account definition (7) and condition C1, we write 
F(Q) = infa F(A). Then condition C2 and property (8) imply 

F(Qo) <~ F(Q1) + F(Q2) + F(Q3) + IQo\(Q1 w Q2 w Q3)I (K/cr 
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From this relation the pyramidal inequality follows by using Theorem 2 
and passing to the limit when the three triangles tend to infinity. 

We shall now prove that statements 1 and 2 are equivalent. 
Clearly, from definition (23), 

f(c~x) = c~f(x) for any c~ > 0 (24) 

and conversely. In dimension d = 2 ,  it is easy to see that the triangular 
inequality for r(n) is equivalent to 

f ( x  + y) ~< f ( x )  + f ( y )  (25) 

But properties (24) and (25) just say that f is a positively homogeneous 
convex function. We shall now show that also in dimension d = 3, property 
(25) is equivalent to the pyramidal inequality for r(n). In fact, since 

13ol no= IAll ha+  IA21 n2+ IA3] n 3 (26) 

the pyramidal inequality says that 

f(Xx + x2 + x3) ~< f ( x l )  + f (x2)  + f (x3)  (27) 

with xk = r~Ak] nk, k =  1 ..... 3. To prove (25), it is enough to find pyramids 
such that 

IAll nl --* x, IAzl n2--* y, iA3] r13 ---~ 0 (28) 

for all x and y. This may be done as follows. We place the vertices Ao and 
A1 on the line of intersection of two planes Pl and P2, respectively, 
orthogonal to x and y. We choose A2 on pl and A 3 o n  P2 in such a way 
that the angles A o A 1 A  2 and A o A 1 A  3 are equal and that A e A 1 / A 3 A  1 = 

Exl/lyJ. By letting the distance AoA 1 tend to infinity while AoA2 and AoA3 
are kept constant, we find that (28) and therefore (25) follow. | 

R o m o r k  4. Since r(n) is bounded, the convex function f ( x )  is 
everywhere finite and hence (see ref. 9, Theorem 24.7) Lipsehitz continuous. 

The pyramidal inequality may be interpreted as a thermodynamic 
stability condition (~,3~ and thus also the convexity o f f (x ) .  The relevance of 
this inequality in the Wulff construction of the shape of a drop (equilibrium 
crystal) has already been discussed in ref. 1. 2 Using the theory of convex 
functions initiated by Minkowsky, (9'12) we briefly comment on this subject. 

2 More general conditions called ellipticity and semiellipticity appear in the mathematical 
literature; see ref. 10, Chapter 5, where instead of pyramids one considers more general sub- 
spaces of Na In particular, the.semiellipticity condition implies the pyramidal inequality and 
the ellipticity condition implies the strict pyramidal inequalityJ ") 
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Let us recall that for any convex set 3ff in Na the support function of 
is the real (or + oo)-valued function defined on R e by 

6 * ( y l J { ) =  sup x . y  (29) 
x E .3ff" 

and that the support functions of nonempty convex bodies are the finite, 
positively homogeneous convex functions (see ref. 9, p. 114). A second func- 
tion associated with a convex set • ,  which is also positively homogeneous 
and convex, is the gauge function, defined by 

g(Yl s f ) =  inf 2 
2 > O ,y  ~ ) . o f f  

It is also known that the support function of a convex set characterizes 
the set. This fact can be quantitatively expressed with the notion of the 
indicator function of a convex set 

6(x[ Ju{') = {0; 0% ifif x q! ~(('x~g( (30) 

It then turns out that 6 and 6* are conjugate convex functions, i.e., they are 
related by the Legendre transformations 

6(x ] J l ) = s u p  { x ' y - 6 * ( y  I out")} (31) 
Y 

8*(y I oU)= sup { x . y - 6 ( x  [ ,,U)} (32) 
x 

The crystal shape ~K, which is defined as an intersection of closed half- 
spaces, namely 

W =  {x: x ' n ~ ( n ) }  (33) 

is therefore a closed, bounded convex set (i.e., a convex body). It has been 
established in refs. 1 and 3 that among the functions which through (33) 
define the same shape "W, there is a unique v(n) which satisfies the 
pyramidal inequality. 

From (23) and (33) we see that in fact the Wulff construction tells us 
that f is the support function of the crystal shape ~ ,  i.e., 

f ( y ) = g * ( y l  ~Y) (34) 

Therefore, the indicator function 6(x [ ~ )  of the Wulff crystal shape is the 
Legendre transform off .  
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Though nonsymmetric situations are also physically interesting (they 
appear, for instance, in the case of a sessile drop on a wall), in the case 
under consideration we have f ( x ) = f ( - x )  and the convex body ~r is 
symmetric with respect to the origin. Now, if ~U is a symmetric, closed, 
bounded, convex set and the origin belongs to the interior of ~W, then 
the support function of ~#2 is finite everywhere, symmetric, and strictly 
positive except at the origin (i.e., it is a norm). See ref. 9, Theorem 15.2. 

In this case, the function f may then be interpreted as the gauge func- 
tion of some convex body ~#/'* = {x: f ( x )  ~< 1 }, the dual of the set ~/U (the 
gauge function of ~W is g(x) = supy [-x. y/f(y)]) .  One can use the convex set 
yCF* instead of the usual Wulff polar plot of T(n) to study the properties of 
the crystal shape ~ .  This duality tells us, for example, in dimension d = 3, 
that corners and edges on ~/U* correspond to plane facets and straight lines 
in ~ ,  and conversely. 3 The strict convexity of f (or the strict pyramidal 
inequality) implies that the crystal shape has no edges or corners. 

Andreev (5) first pointed out that the Wulff construction is simply the 
geometrical version of a Legendre transformation. He obtained from this 
fact a function ~0 on Na- i  such that the graph of x a =  ~0(xl ..... x~_ ~) for 
xa > 0 coincides with the boundary of the crystal shape YU. Since ~/U is a 
convex body, symmetric with respect to the origin, ~0 is a concave function, 
and 

~/]/'= { x ~ R d :  - -@(--Xl , . . . ,  - -Xd  1 ) ~ X d ~ @ ( X  1 ..... X d _ l )  } (35)  

In the present context this means that - (p  is the convex conjugate of 
another convex function. It is not difficult to see that this function is the 
projected surface tension (5), considered as a function rp(v) on R ~ ~ by 
letting v = (nl/na,.. . ,  nd 1/nd). Then, since 

72p(Xl ..... Xd 1 ) = f ( x l  ..... xa 1' l )  (36) 

the function rp is convex, and 

-~0(u) = ~7(u) = sup { u . v -  ~Av)} ~37) 
v 

Indeed, from (31) we see that, if x e ~ ,  then, x - y - f ( y )  ~< 0 for any y, and 
therefore 

x j < ~ f ( y l , . . . ,  Yd 1, 1 ) - ( X ] y l - k  " '"  - k X d - - l Y d - - l )  (38 )  

which together with (36) and with the definition of q0 implies (35). 

3 Let us illustrate these facts in the simplest example of the Ising ferromagnet at zero tem- 
perature. In this case r (n)=J( [n l [  + ... + ]nat ) and its polar plot consists of a portion of a 
sphere in each octant of Nd. The function f is then f ( x ) -  J(]xl[ + ... + [xa[ ), which is the 
support function of a cube, and g ( x ) =  J max{ [x~] ..... ]xd[ } is the associated gauge function. 



462 Messager et aL 

The crystal shape itself may be regarded as the free energy associated 
with a statistical mechanical ensemble. This ensemble is defined by expres- 
sions (39) and (40) below and, as we shall prove in the next theorem, gives 
the function q~ in the thermodynamic limit. 

Let A be a parallelepipedic box of sides L1 ..... Ld_ 1, M with basis 

Q =  {i~ Y' :  O<~ik <~Lk, k= 1,..., d -  1} 

For v e N d- 1, we denote by (a, b, v) the mixed boundary condition (a, b, )4) 
when 2 is the hyperplane which passes through the origin and the points 

(L1, 0 ..... 0, Vl), (0, L2,..., 0, v2) ..... (0, 0 ..... La-1, va-1) 

For a n y u E R  e lwede f ine  

(Z(a,a,V~(A) Z~b ..... )(A)~1/2 
Z e ( u ) =  2 {exp[ /3(u 'g / ' ) ]}sup\  Z - - ~ Z b - - ~  j (39) 

u  -1 M 

1 
qgQ(u)- /3 [QI log SQ(u) (40) 

where the vector V is related to v by Vi= (IQI/Le) re, for i =  1 ..... d -  1. 
We introduce the effective domain of a convex function f on ~d 1 to 

be the set 

dom f = {u: f (u )  < oe } 

We define D = d o m ( - q ~ )  and write, respectively, D int, /), and c3D for the 
interior, the closure, and the boundary of the convex set D. 

T h e o r o m  4. Under the above hypothesis, we have the following 
results. 

1. If I I ~ D  int, then the thermodynamic limit of q)Q(u) exists, and 

lim q~Q(u) = q)(u) 
Q ~ 2 "  

2.  I f  u e R d 1 \ / ~ ,  t h e n  

lim ( p Q ( u ) = - o o  
Q ~ '  

3. If u e c~D, then 

lim sup ~oe(u) ~<lim sup q)(uo) 
Q ~ . L  -a' u o ~ u  

u 0 ~ int D 

and 
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Proo/. We first remark that if we define Fv(Q)=infMF(A), where 
F(A) is the function introduced in (7), we may write 

-~Q(u)= ~ {exp[f l (u 'V)]exp[- f lF , (Q)]}  
VEZ_ d - 1  

We introduce 

Z~(u )=  sup {expF~(u.9)] expF-flF,(Q)]} 
v ~ Z d  1 

and proceed, as in the Appendix of ref. 13, to study the thermodynamic 
limit for this quantity. 

According to Theorem 1 and definition (37), we have 

IQI (u 'v)-Fv(Q)~< IQI r*(u) 

for all v e ~.-1,  so that 

Z~(u) ~< expEfl IOl v*(u)] (41) 

On the other hand, for any 6 > 0 and sufficiently large Q one can find, 
taking into account that rp(V)= infQ= ~, [F.(Q)/IQI] and definition (37), 
an orientation v ~ Nd-1 such that 

IQI ( u ' v ) - F v ( Q ) =  IQI [ ( u ' v ) - - -  

and therefore 

Fv(Q) 1 
IQI J 

IQI + IQI (4__e)] 
IQI _l 

/> Ial [~*(u)-~] 

.~, (u)/> exp{fl I QI [t*(u) - 6 ] } (42) 

Inequalities (41) and (42) imply the statement 1 of the theorem with 
replaced by Z+. 

To prove this statement for ~, we follow the argument of Theorem 2 
in ref. 13. First, it is clear that 

Next, let I be the ( d -  1)-dimensional interval 

I =  {ue Na-I: u; <~ui<<u;, ' i= 1 ..... d -  1} 

822/67/3-4-3 
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and J the set of the vertices of L Then, the inequality 

exp[ - f lFv(Q)]  ~ {exp[ - f l  IQI (~. v)] } 3~(~)  

for fie J implies 

~Q(u)~< ~. exp[/r LQI vi(u;-ui)] 
i = 1  vi>~O 

exp[/3 IQI vAu;'-u~)] 1 "sup -~,(u) 2 + 
vi<~O ) u ~ J  

so that, for u e / ,  we get 

sup ZJ(fi)  

where 

A =  min min lu,-ff,I ,  7=  min (~ IQI/Li) 
i= l , . . . , d  1 f iEJ  i--1, . . . ,d 1 

Then we conclude the proof of Statement 1 by using the continuity of 
r*(u). Statements 2 and 3 can be proved analogously; see again ref. 13. | 

Remark 5. An interesting application of Theorem 4 comes from the 
fact that generally ~o(u) is easier to compute than r(n), because the summa- 
tion on the right-hand side of (39) suppresses a canonical constraint. 
In particular, in dimension two, for the interface described by the 
solid-on-solid model (see the Appendix for the definition of this model) the 
function q) is easily computed by summing a geometrical series, and one 
obtains 

(p(U) = J--/~ - 1 log 
sinh flJ 

c a s h / ~ J -  cash flu 

where u E D int and D = [ -  J, J ] .  

Remark 6. Notice that in dimension two, if n =  ( - s i n  0, cos 0) and 
~(0) = ~(n), then v -- - t a n  0 and the projected surface tension is 

Zp(V) = "r(n)/cos 0 

When rp is differentiable, the maximum in (37) is obtained for v = - t a n  0 

such that u--z'p(v), i.e., for 

u = - s in  0 r(0) - cos 0 r'(0) (43) 
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which gives 

(p(u) = cos 0 ~(0) - sin 0 r '(0) 

(p'(u) = tan 0 

-~o"(u) = 1/~;'(v)= 1/{cos ~ 0 [~(0)+  <(0)3 } 

(44) 

(45) 

(46) 

It has been proposed that the right-hand side of (46) is the mean 
square vertical displacement per unit length of an interface with slope 0. 
This has been proved in the cases of solid-on-solid and Ising models. (~8) 
When the denominator of this term is strictly positive (and this was also 
shown in the above-mentioned cases), then the strong triangular inequality 
holds and the equilibrium shape has a smooth boundary. 

R e m a r k  7. For the two-dimensional Ising model with nearest 
neighbor interactions, with horizontal and vertical coupling constants Jl 
and J2, it has been shown (14~ that the right-hand side of (44) is (up to a 
factor/3 -1) the Onsager function ~(co), while that of (45) is its derivative 
(up to a factor - i ) .  The Onsager function is defined by the equation 

cash ~(co) = cash 2K1 cash 2K* - sinh 2K~ sinh 2K* cos co 

where K i = / 3 J  i for i = 1 , 2  and K * = - ( 1 / 2 ) l o g t a n h K i  are the dual 
coupling constants. We thus get ~(co)=riO(u) and ie)=/3u, so that the 
Wulff shape can be obtained from 

q,(.) =/3-1"j(-i/3u) 

R e m a r k  8. Recalling the modified Young relation for a sessile drop 
of a phase a inside a phase b on a wall w, that is, 

cos 0o T~b(Oo) -- sin 0o z;b(0o) = v~w -- rbw 

where %~ denotes the surface tension between the considered phases, we 
see that relations (43) (45) lead directly to the Winterbottom construc- 
tion (15) and give an easy way to compute the contact angle of the drop with 
the wall, namely 

0 o = arctan (p'ab [(r rbw)] 

Remark 9. It is also convenient to use the functions (p to study the 
coexistence of three phases, say a, b, and c. In this case, one associates 
three functions q)ab, ~0bc, and (p,c with the three corresponding interfaces. 
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The contact angles 01 and 02 of a meniscus of the phase b inside a and c 
satisfy the Herring relations. (~6) They can be written 

(~Oab(Ul) "JI- q)bc(U2) = q) ac(O ) 

bl 1 ~ U 2 

where 

q)ab(Ul) = COS 01 T a b ( O 1 ) -  sin 01 Z'ab(01) 

qGc(u2) = cos 02 %c(02) - sin 02 Go(02) 

The meniscus can then be drawn according to the so-called double Winter- 
bottom construction (17) and the solution Ul=U2=U gives the contact 
angles 01 and 02 of the meniscus: 

tan 01 = q)tab(bl ) 

tan 02 = ~0;c(u) 

Remark 10. In dimension d =  3 our Theorem 4 is much less useful. 
In fact a modified expression for the partition function (39) has been used 
to obtain the function ~0(xl, x2), and thus the crystal shape, in some 
exactly solvable surface models of solid-on-solid type, in which the height 
differences for nearest-neighbor sites are restricted to have only two 
possible values. One of these models is the body-centered solid-on-solid 
model of van Beijeren (19) and another is the triangular Ising solid-on-solid 
model of B16te and Hilhorst/2~ (see also ref. 21 ). These two models appear 
in the description of the ground-state interfaces for the Ising model on a 
body-centered cubic lattice. (22) The crystal shape associated with these 
models was obtained from the following partition function, for which, 
unfortunately, we are not able to prove the corresponding equivalence 
theorem. One replaces in expression (39) the sum over all v ~ 7/2 by the sum 
over all integers wi and wj, where i = 1,..., L1 and j = 1,..., L2. Then, instead 
of the boundary condition (a, b, v) one uses the condition (a, b, 2), where 
2 is a surface which passes through the points (i, O, wi), (i, L2, w'L2 + wi), 
(0, j, wj), and_(Ll,_ j, wL~ + wj), for i =  1,..., L1 and j = 1 ..... LE. Finally, the 
vector V = ( V 1 ,  V2) is defined by Vl=Z~=oW~ and P'2 -wL2-~j=0 w'j. In 
this way the van Beijeren model is equivalent to a six-vertex model 
with polarizations, and the B16te-Hilhorst model to a zero-temperature 
triangular Ising antiferromagnet with external fields. The equilibrium shape 
of the correspond crystals is directly related to the free energy of these 
models and may be exactly computed. The first model shows facet forma- 
tion in directions of type (100) and (110), the second, in directions of type 
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(110). See the original work by Jayaprakash et al.(23) and Nienhuis et ai.(241 
for more detailed discussions, including a computation of the boundary of 
these facets and the study of their roughening transitions. 

A P P E N D I X  

The proof of conditions C1 and C2 for ferromagnetic q-state spin 
systems goes as follows. We let S~ be the set of sites of A\A' which are 
above (or on) the hypersurface defined by the function 2, and $2 the sites 
of A\A' which are below this surface. 

To prove C1, we notice that F(A') may also be obtained by adding the 
external fields 

- h  ~ g.(~),a to H(~A j a) 
i~SI~S2 

- h  ~ 3~(,),b to m(aA 4b) 
i~SlwS2 

- h  ~ 6~(~),~-h ~ 6o(i),b to H(aA l(a,b)) 
icS1 i~S2 

--h 2 6a(i),b - h  2 (~a(i),a to H(aA I ( b , a ) )  
i~Sl iES2 

and letting h tend to infinity. In fact, after this limit the partition functions 
Z(e';)(A) in (7) are replaced by Z(e';)(A ') multiplied by the term 
exp[S~A~A,_2j,A~(SI~S2)~qSA(~)]. This last sum decomposes into 
~.AcaA,=~,Ac~SIr and ~.AcaA,=~,Ac~S2r SO that these 
terms cancel in the ratio in formula (7) because qlSA(a ) = qbA(b ). Then, the 
Ginibre inequalities (25) and their generalizations (26) tell us that, for any c, 

< ~ a(i),b > b -- < ~ a(i),c > (b'a) >/ 0 

where ( . . . ) ~  denotes the expectation values corresponding to the Gibbs 
measure (Z~)- lexp[- f lH(al~)] ,  and show that the derivative with 
respect to h of the modified F(A) is positive. From this the second 
inequality of condition C1 follows. The same inequalities imply that Z a or 
Z b is greater than Z (a'b) or Z (b'a~ and give the first inequality of condi- 
tion C 1. 

To prove C2, we proceed analogously. Since in this case there can be 
some subset A of diameter less than R and containing sites of both $1 and 
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3 2 ,  the modified F(A) gives in the limit h ~ ~ the sum of F(A') with a 
term which is bounded above by 

2 ~ sup ~A(o) 
A 

where the sum is over those A satisfying A ~ $1 w $2, A n $1 ~ ~ ,  and 
A n $2 r ~ .  This last term is clearly bounded by the second term of the 
right-hand side of C2 provided that 1(/2 is greater than the norm of the 
interaction: 

K~> 2 sup ~ j~bA(o)] 
A~0 

The proof for the ferromagnetic spin-l/2 system appears as the particular 
case q = 2, or can be proved analogously by using Griffiths inequalities. 

Notice that conditions CO, C1, and C2 hold also for solid-on-solid 
models of interfaces. In these cases F(A) takes the following form: 

F ( A ) = - - ~ l o g  ~ exp --/~ ~ P(Ih(i ' )-h(j ' )])  
h(i') ( i ' , j ' ) ~ Q  

where P(x) is some polynomial (positive for x/> 0), the h(i') belong to Z, 
rnl(i' ) <~h(i')- ,~(i')<~ m2(i' ) and h(i')= 2(i') in the boundary of Q. 

The proof of the second inequality of C1 is here obvious, while the 
proof of C2 follows by restricting the summation to the h(i') such that 
h(i') = )~(i') if i '~ Q\Q'. The proof of CO follows analogously by restricting 
in the appropriate way the summation over the h(i'). The first inequality 
of C1 (F(A)>~0) is not always true. However, let us notice that, for the 
existence of the surface tension, we only need F(A)>~ -clQ] which follows 
from the condition 

e -/3P(Ixl) < -k-vo 
x E Z  

A C K N O W L E D G M E N T  

We are grateful to R. L. Dobrushin for helpful and stimulating 
discussions. 

NOTE A D D E D  IN PROOF 

We notice that Taylor's article [-27] contains already the remark that 
if the surface tension is extended by positive homogeneity to a function 
on Ra and it is a convex functional, then it is the support of the convex 
body W. 
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